An Algorithm for Polynomial Matrix Factor Extraction
نویسندگان
چکیده
An algorithm is described for extracting a polynomial matrix factor featuring any subset of the zeros of a given non-singular polynomial matrix. It is assumed that the zeros to be extracted are given as input data. Complex or repeated zeros are allowed. The algorithm is based on interpolation and relies upon numerically reliable subroutines only. It makes use of a procedure that computes the generalized characteristic vectors of a polynomial matrix at a given point. The extracted factor is provided in column-and row-reduced Popov form. Applications of the algorithm include polynomial matrix interpolation, plus/minus factorization, column-and row-reduction, or computation of the Smith form of a polynomial matrix. The numerical routines described in this paper are implemented in the new release 2.0 of the Polynomial Toolbox for Matlab.
منابع مشابه
AN ALGORITHM FOR FINDING THE EIGENPAIRS OF A SYMMETRIC MATRIX
The purpose of this paper is to show that ideas and techniques of the homotopy continuation method can be used to find the complete set of eigenpairs of a symmetric matrix. The homotopy defined by Chow, Mallet- Paret and York [I] may be used to solve this problem with 2""-n curves diverging to infinity which for large n causes a great inefficiency. M. Chu 121 introduced a homotopy equation...
متن کاملAn infeasible interior-point method for the $P*$-matrix linear complementarity problem based on a trigonometric kernel function with full-Newton step
An infeasible interior-point algorithm for solving the$P_*$-matrix linear complementarity problem based on a kernelfunction with trigonometric barrier term is analyzed. Each (main)iteration of the algorithm consists of a feasibility step andseveral centrality steps, whose feasibility step is induced by atrigonometric kernel function. The complexity result coincides withthe best result for infea...
متن کاملA Toeplitz algorithm for polynomial J-spectral factorization
A block Toeplitz algorithm is proposed to perform the J-spectral factorization of a para-Hermitian polynomial matrix. The input matrix can be singular or indefinite, and it can have zeros along the imaginary axis. The key assumption is that the finite zeros of the input polynomial matrix are given as input data. The algorithm is based on numerically reliable operations only, namely computation ...
متن کاملHigher numerical ranges of matrix polynomials
Let $P(lambda)$ be an $n$-square complex matrix polynomial, and $1 leq k leq n$ be a positive integer. In this paper, some algebraic and geometrical properties of the $k$-numerical range of $P(lambda)$ are investigated. In particular, the relationship between the $k$-numerical range of $P(lambda)$ and the $k$-numerical range of its companion linearization is stated. Moreover, the $k$-numerical...
متن کاملInverse scattering problem for the Impulsive Schrodinger equation with a polynomial spectral dependence in the potential
In the present work, under some di¤erentiability conditions on the potential functions , we rst reduce the inverse scattering problem (ISP) for the polynomial pencil of the Scroedinger equation to the corresponding ISP for the generalized matrix Scrödinger equation . Then ISP will be solved in analogy of the Marchenko method. We aim to establish an e¤ective algorithm for uniquely reconstructin...
متن کامل